Parametric Optimization in Data Mining Incorporated with GA-Based Search
نویسندگان
چکیده
A number of parameters must be specified for a data-mining algorithm. Default values of these parameters are given and generally accepted as ‘good’ estimates for any data set. However, data mining models are known to be data dependent, and so are for their parameters. Default values may be good estimates, but they are often not the best parameter values for a particular data set. A tuned set of parameter values is able to produce a data-mining model of better classification and higher prediction accuracy. However parameter search is known to be expensive. This paper investigates GA-based heuristic techniques in a case study of optimizing parameters of back-propagation neural network classifier. Our experiments show that GA-based optimization technique is capable of finding a better set of parameter values than random search. In addition, this paper extends the island-model of Parallel GA (PGA) and proposes a VC-PGA, which communicates globally fittest individuals to local population with reduced communication overhead. Our result shows that GA-based parallel heuristic optimization technique provides a solution to large parametric optimization problems.
منابع مشابه
Chaotic-based Particle Swarm Optimization with Inertia Weight for Optimization Tasks
Among variety of meta-heuristic population-based search algorithms, particle swarm optimization (PSO) with adaptive inertia weight (AIW) has been considered as a versatile optimization tool, which incorporates the experience of the whole swarm into the movement of particles. Although the exploitation ability of this algorithm is great, it cannot comprehensively explore the search space and may ...
متن کاملParametric optimization of Nd:YAG laser microgrooving on aluminum oxide using integrated RSM-ANN-GA approach
Nowadays in highly competitive precision industries, the micromachining of advanced engineering materials is extremely demand as it has extensive application in the fields of automobile, electronic, biomedical and aerospace engineering. The present work addresses the modeling and optimization study on dimensional deviations of square-shaped microgroove in laser micromachining of aluminum oxide ...
متن کاملFUZZY GRAVITATIONAL SEARCH ALGORITHM AN APPROACH FOR DATA MINING
The concept of intelligently controlling the search process of gravitational search algorithm (GSA) is introduced to develop a novel data mining technique. The proposed method is called fuzzy GSA miner (FGSA-miner). At first a fuzzy controller is designed for adaptively controlling the gravitational coefficient and the number of effective objects, as two important parameters which play major ro...
متن کاملUsing a combination of genetic algorithm and particle swarm optimization algorithm for GEMTIP modeling of spectral-induced polarization data
The generalized effective-medium theory of induced polarization (GEMTIP) is a newly developed relaxation model that incorporates the petro-physical and structural characteristics of polarizable rocks in the grain/porous scale to model their complex resistivity/conductivity spectra. The inversion of the GEMTIP relaxation model parameter from spectral-induced polarization data is a challenging is...
متن کاملPredicting Unconfined Compressive Strength of Intact Rock Using New Hybrid Intelligent Models
Bedrock unconfined compressive strength (UCS) is a key parameter in designing thegeosciences and building related projects comprising both the underground and surface rock structures. Determination of rock UCS using standard laboratory tests is a complicated, expensive, and time-consuming process, which requires fresh core specimens. However, preparing fresh cores is not always possible, especi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002